
BanditNet with Partial Support

Anika Talwar,Henry Samuelson, Phillip N O’Reggio

Spring 2019

1 Introduction

We aim to develop and analyze an algorithm that generates a policy for a
given dataset, which has been appropriately normalized and split into training,
test, and validation sets, outputting a lambda value that will later be used to
test batch learning from logged bandit feedback.

2 Basic Outline

1. Combine both training and test data sets to maximize row count.

D = Dtest ∪DTrain (1)

2. Normalize all the features (output and input) by mean and standard de-
viation. Normalized equation below on each column:

X − µ
σ

(2)

3. Softmax Equation as a function of λ.

softmaxλ(y|s) =
exp(λsy)∑
y exp(λsy)

(3)

4. generate the δ(y|x) by normalizing the output features to percentile rank.
This is done by sorting the list least to greatest. Where S is sorted, and
i is an index

Si
i

(4)

5. Make train/test split Strain and Stest

6. further split train Strain into train for logger SLog−Train and train for
banditnet Sbanditnet−train

1

7. Train linear regression on logger training set SLog−Train. From predictions
s of the linear regression, generate Logging policy π0

s =

(
s1

...sn

)
→ π0(y|s) = softmaxλ(y|s) (5)

Takes the last 30% and uses it as a Validation dataset. Uses the first 30%
** At the moment not doing this ** Drops rows that contain banned val-
ues (EX. -999 on the higgs dataset since since that represents “variables
[that] are meaningless or cannot be computed” Doesn’t do this since when
normalized, it’s hard to distinguish these types of number from other rows
Preprocesses data: Right now does nothing since this is handled by the R
file before running Sets up the Linear Regressor with learning rate, gra-
dient clip, inputs, outputs, etc. Trains on the first 70% (train/test) using
batch sizes of size LINEAR-BATCH-SIZE for LINEAR-STEPS number
of steps. If REPORTING-PERIOD is not 0, will record the current loss
based on a sample of size REPORTING-SAMPLE-SIZE of the train/test
data.

8. Generate Bandit-data on train data for banditnet Sbanditnet−train

Sλ = ((xi, y ∼ π0(y|xi), pi0(y|xi), δ(y|x)))∗ (6)

9. Train Banditnet on Sλ → π

10. Test π on Test 10 output of Stest∑
10−Test

∑
y

π(y|xi)δ(y|xi) (7)

2

3 Code Description

3.1 Initial Lambda Values

First, the lambda value arguments inputted by the user are read into a
list of floats. If no lambda value is specified, then default of [2.0] is used.

3

3.2 Data Initialization and Preprocessing

After getting the lambda values to be used for generation, the data is read
into a pandas dataframe from a csv file called “NormilizedTraining5perc”
in the same directory as policyGeneratorApp.py. Then, rows contain-
ing values in VALUES TO DROP constant are removed; specify dropped
values() specifies what values should be dropped. Columns used as inputs

and outputs are then specified according to the values of the InputFeatures
and OutputFeatures enum classes. The data is then initialized and prepro-
cessed using policyGen.py methods set up data and preprocess data. The
former uses the 2 lists of string feature names to create separate pandas
dataframes; one containing all the input feature columns and one with the
output feature columns. In the latter method, the data is preprocessed
by changing the values of both the input and output dataframe to their
percentile ranking. Percentiles are calculated by replacing the value of a
row by its percentile based on all the values in its column.

3.3 Set Up Regression

The linear regression is set up by initializing a tensorflow Linear Regressor
with the dataset, a learning rate of 0.05 and a gradient clip of 5.0.

3.4 Train Data

The tensorflow Linear Regression model is then trained using only the first
5 percent of the rows of the percentile normalized dataset. After training,
validation statistics for each output feature and the average results is
calculated based off of the entire dataset. If period in train linear is not
equal to 0, will periodically print out the current RMSE for all the output
features and the average RMSE, which was used in debugging.

3.5 Softmax

After the data has been passed to the linear regressor and predictions have
been generated, the softmax function is applied using the softmax equa-
tion. First, the array of predictions for each output feature is obtained
and the softmax sum (given in the denominator of Equation 3) is calcu-
lated for each feature’s set of predictions. Next, a dictionary is kept as
an accumulator with the keys as the output features and the values being
the softmax values applied to each prediction. Finally, the dictionary con-
taining all the relevant softmax values is converted to a pandas dataframe
which will later be used while generating bandit data.

4

3.6 Banditnet Data Generation

3.6.1 Files and Split

Lastly, the data is generated in the bandit net data format, for each lambda
used as an argument. The data is generated in 3 splits: a train, test,
and validation set (Which means 3 files are generated for each lambda
value specified. The files are called banditnet lambdaN train.txt, ban-
ditnet lambdaN train.txt, and banditnet lambdaN train.txt respectively
(where “N” would be replaced by the value of the lambda value it was gen-
erated with. Whole valued numbers would be shown without the decimal
point. For example: 0 would be lambda0, while 1.8 would be lambda1.8).
The size of these splits are determined by the values of the constants
TRAIN SPLIT and TEST SPLIT. If either of these values are equal to
0, then it will instead generate a singular file containing all the splits to-
gether (called banditnet lamnbaN.txt). Theses txt files are located inside
of a directory called banditnet data.

3.6.2 Banditnet Format and Choices

Banditnet data is formatted with a “header”, containing general informa-
tion about the body and a “body”, which has information about chosen
products. The header contains information for a exID, hashID, wasAd-
Clicked, propensity, nbSlots (number of slots), nbCandidates (number of
candidates), and displayFeatures. To convert the dataset to fit these cat-
egories, the row ID was used as a substitute for exID (replaced by the
number) and hashID (replaced by the hash value of the string represen-
tation of the row ID). wasAdClicked is always replaced by the number 1.
propensity is determined by the result of the propensity of the first item
picked from the softmax set using random sampling without replacement.
nbSlots is always one, while nbCandidates is equal to the number of out-
put features. displayFeatures corresponds to each of the input features;
the first number before the colon is the index of the feature with respect to
the row and the number after the colon is the value of said feature. The
body contains one element for each output feature, ordered by random
sampling without replacement of the softmax results of the row. In the
body, information such as wasProductClicked, exID, and productFeatures
are included. wasProductClicked is replaced with 1 just like the body,
and exID is the same as the exID in the header. For productFeatures, the
number before the colon corresponds to the selected features position in
the dataset, while the number after the colon corresponds to the index of
the feature (which is always 1 here).

5

3.7 Debugging Methods + Misc

3.7.1 parse feature labels()

Used to get columns from the dataset based on their index instead of
by name. Is currently not used to specify what features are inputs and
outputs.

3.7.2 print inputs targets names()

Prints the values of the names of columns used as input values and output
values.

3.7.3 print data stats()

Prints statistics about the input and output columns of the dataset. Infor-
mation includes the count, number of unique values, mean, median, mode,
percentiles, maxes, and mins. Also prints the first 10 values of input and
output columns.

3.7.4 print predictions()

Prints a number of predicted values using the same dataset the linear
regressor was trained on, or a different dataset if provided. Used to debug
the results of linear regressor and to make sure training was yielding fairly
comparable values to the true values.

3.7.5 make predictions dataframe() and make percentile dataframe()

The predictions and percentile dataframes were constructed to initially
be used in the banditnet data generation phase but were later useful in
debugging. The predictions dataframe was a dataframe of the output fea-
ture names as the column headers and the values being the predictions
returned by the linear regressor for each example corresponding to the
output feature. make predictions dataframe() constructs this dataframe
and scales the values to be in the range 0 to 1. The percentile dataframe
was a dataframe of the input feature values, their predictions, a randomly
chosen softmax value, and the reward based on the scaled percentile val-
ues. make percentile dataframe() uses percentile scale() to scale the pre-
dictions appropriately.

6

3.7.6 show loss graph()

Graphs the RMSE against number of steps in training. Lines for each
individual output feature are partially transparent and colored randomly
to distinguish between different features. The average RMSE of all output
features is plotted using an opaque line.

3.7.7 progress bar()

This is called in generate bandit data to show how the progress of creating
banditnet data for each lambda.

7

