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1 Introduction

Let: q, p ∈ prime. Let: N = qp. Fermat’s Factorization states:

N = (a+ b)(a− b) (1)

Unless
√
N ∈ N, then q >

⌈√
N
⌉
, and p <

⌈√
N
⌉
. Hence we define:

a =
⌈√

N
⌉

N = (
⌈√

N
⌉

+ b)(
⌈√

N
⌉
− b)

(2)

This works if the difference of the perfect square above N ,
⌈√

N
⌉2

, and N is

also square. √⌈√
N
⌉2
−N ∈ N (3)

To account for situations where the difference isn’t square we can add an k to
make this always true. √

(
⌈√

N
⌉

+ k)2 −N ∈ N (4)

The k insures that the square root will be in Z. Hence we can adapt the earlier
equation too:

N = (
⌈√

N
⌉

+ k + b)(
⌈√

N
⌉

+ k − b) (5)

For all cases where the difference between

√⌈√
N
⌉2
−N ∈ N we assume k = 0.

For non-zero k’s, the complexity is NP hard, whereas when k = 0 the equation
can be solved with basic algebra.
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2 Determining b

We first define some rules for k and b. It is clear that b > 0 as b = 0 would
mean q = p. We make the assumption that k < b. Then we can determine a
relation between q, p, b.

q − p
2

= b (6)

This equation can be shown to be objectively true if the purpose of b is thought

of correctly. If b is the distance from some middle point (
⌈√

N
⌉

+ k)2 between

q and p then b must be half of q − p, allowing b to be added and subtracted in
either direction, to find q and p.

This next definition of b is less obvious but crucial to defining a range for b.

b =

√
(
⌈√

N
⌉

+ k)2 −N (7)

It turns out that equation (4), the one we want to solve for an integer to deter-
mine the correct k is actually b. Now that we have to equations for b we can
eliminate b, and derive a direct relationship between k, q, p.

q − p = 2 ∗
√

(
⌈√

N
⌉

+ k)2 −N (8)

This equation tells allot about the relation between q, p and k, as we now have
a solid equation for determining spacing which is very helpful in deriving the
bounds of b, k, q and p.

3 Determining Variable Bounds

These variable bounds are only true if we assume k 6= 0, as we can assume if
k = 0, then q − p must = 2, and it would be very algebraically simple. We can
first work to determine bounds for k. As stated earlier k < b, this can function

as our top bound, kmax. The top bound of bmax =
⌈√

N
⌉

There is a very

import relationship between the growth rate of b and k. b grows at a faster rate
than k, which is given by eq (7). If we assume bmax, we can determine kmin.We

know from the definition of p, that p = (
⌈√

N
⌉

+k−b). Plugging in bmax yields

k = 3.

p = (
⌈√

N
⌉

+ kmin − bmax) ≥ 3

p = (
⌈√

N
⌉

+ kmin −
⌈√

N
⌉
) ≥ 3

kmin ≥ 3

(9)

If bmax =
⌈√

N
⌉

and k < b, we can use the relationship between k and b to

calculate kmax. The larger the b the larger the k. According to eq (7) we can
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solve using bmax to yield kmax.

bmax =

⌈√
(
⌈√

N
⌉

+ kmax)2 −N

⌉
=
⌈√

N
⌉

kmax =
⌈√

b2max +N
⌉
−
⌈√

N
⌉

kmax =

⌈√⌈√
N
⌉2

+N

⌉
−
⌈√

N
⌉ (10)

Now we have kmax directly in terms of N . This is what we need to determine
a final bound. We can use kmin ≥ 3 to help us solve the bottom bound for b,
bmin.

bmin =

⌈√
(
⌈√

N
⌉

+ kmin)2 −N

⌉

bmin =

⌈√
(
⌈√

N
⌉

+ 3)2 −N

⌉ (11)

Now we have the top and bottom bounds for both b and k we can can rewrite
b and k as,

3 ≤ k ≤

⌈√⌈√
N
⌉2

+N

⌉
−
⌈√

N
⌉

⌈√
(
⌈√

N
⌉

+ 3)2 −N

⌉
≤ b ≤

⌈√
N
⌉ (12)

Solid b and k bounds allow us to now determine bounds for q and p. We will
acknowledge the obvious but important relationships,

N

qmin
= pmax,

N

pmin
= qmax (13)

This is helpful, because calculating qmax and qmin is easy, whereas one cannot
calculate pmin and pmax using the standard definitions of q and p, due to the
definitions of p including a − sign.

q = (
⌈√

N
⌉

+ k + b)

qmax = (
⌈√

N
⌉

+ kmin + bmax) = (2
⌈√

N
⌉

+ 3)

qmin = (
⌈√

N
⌉

+ kmin + bmin) = (
⌈√

N
⌉

+ 3 +

⌈√
(
⌈√

N
⌉

+ 3)2 −N

⌉
)

(14)
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The bounds for q are complete along with the bounds of p using eq (13),

⌈√
N
⌉

+ 3 +

⌈√
(
⌈√

N
⌉

+ 3)2 −N

⌉
≤ q ≤ 2

⌈√
N
⌉

+ 3

N

2
⌈√

N
⌉

+ 3
≤ p ≤ N⌈√

N
⌉

+ 3 +

⌈√
(
⌈√

N
⌉

+ 3)2 −N
⌉ (15)

For example the for N = 2231 = qp = (97)(23), k = 12, b = 37, the estimated
bounds are as follows:

3 ≤ k ≤ 20

20 ≤ b ≤ 48

71 ≤ q ≤ 99

23 ≤ p ≤ 32

(16)

These bounds are quite good.

4 Solving For k

We can rewrite the b relation equation– eq(8)– to be in terms of k to determine
how many k’s we have to brute force directly in order to deterine the factors of
N , p and q.

kactual =
1

2
(q + p− 2

⌈√
N
⌉
) (17)

This means that the number of k’s we have to guess is directly dependent upon
the distance between p and q, and the actual value of N . Since we can calculate
the bottom bound of k we can subtract it from the number of steps it takes to
solve to calculate a new complexity.

kguesses =
1

2
(q + p− 2

⌈√
N
⌉
)− 3 (18)

Given the equation it would appear to make N as resistant as possible to brute
forcing k’s, the best thing to do would be to maximize the first half of the
equation by maximizing both q and p. And then to minimize the second half of
the equation by making N or q ∗ p smaller. This means that there is an optimal
ratio that exists that maximizes q + p while minimizing q ∗ p. This may seem
counter intuitive at first, as it is commonly thought that a larger N is better,
but it is really only better when q − p and q + p are larger.

5 A Direct Function

We have an equation for N , eq. (5), we have an equation for b in terms of k eq.
(7). Now we also have an equation for k, (kactual), eq. (17). Eq. 7 and 17 can
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be plugged into eq. 5.

N = (
⌈√

N
⌉

+ k + b)(
⌈√

N
⌉

+ k − b)

N = (
⌈√

N
⌉

+ k + (

√
(
⌈√

N
⌉

+ k)2 −N))(
⌈√

N
⌉

+ k − (

√
(
⌈√

N
⌉

+ k)2 −N))

N = (
⌈√

N
⌉

+
1

2
(q + p− 2

⌈√
N
⌉
) + (

√
(
⌈√

N
⌉

+
1

2
(q + p− 2

⌈√
N
⌉
))2 −N))

(
⌈√

N
⌉

+
1

2
(q + p− 2

⌈√
N
⌉
)− (

√
(
⌈√

N
⌉

+
1

2
(q + p− 2

⌈√
N
⌉
))2 −N))

(19)

Simplify,

N = (
1

2
(dqe+ dpe) +

√
(
1

2
(dqe+ dpe))2 −N)(

1

2
(dqe+ dpe)−

√
(
1

2
(dqe+ dpe))2 −N))

Let: J =
1

2
(dqe+ dpe)

N = J2 −
⌈√

J2 −N
⌉2

(20)

The final simplification with J can be confusing. Eq. (19) is a linear line that
is equivalent to y = −x + (q + p), where x and y are possible q, p values, and
where (q + p) is some constant. This means that at all points on the line the x
and y values add to (q + p). It is also true that this line must intersect the line
y = x, due to its slope being −x. Then one can substitute x for y. Plugging in
x for y, yields just J = x, so we can consider J as a variable with no definition
except solving fo J will be solving for the case in which x = y. This will not be
the actual answer we need for x and y, but it will tell us what (q+ p) is. If this
is known we can factorize our number as we know qp = N and y = −x+(q+p),
as there is only two free variables since (q + p) and N are known..There will
be two intersections of the lines, with coordinates (q, p), and (p, q). As shown

bellow, the red line is 2231 = J2 −
⌈√

J2 −N
⌉2

, where J has a definition in
terms of q and p, and the blue line is, qp = 2231. Their intersections are the
prime factors of N , in this case 2231.
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6 Substitution With A Totient

The totient of the factor of two primes can be defined as (p− 1)(q − 1) = φ. It
can also be rewritten as N − q − p+ 1 = φ. This last identity is very powerful.
Thinking about the totient in terms of k and b we can define it as,

φ = (
⌈√

N
⌉
− 1 + k + b)(

⌈√
N
⌉
− 1 + k − b) (21)

This is reasonable as φ = (p− 1)(q − 1). Plugging into the definition of b from
eq. (7) we get the powerful relation,

b =
√

(48 + k)2 −N =
√

(47 + k)2 − φ
Simplify,

N − φ = 2
⌈√

N
⌉
− 1 + 2k

(22)

Substituting for N − φ will lead to the previously derived definition of k =

(q + p)/2−
⌈√

N
⌉
. We now have the relation,

N − φ = 2
⌈√

N
⌉
− 1 + 2k = q + p− 1 (23)

We now write a solid definition of k in terms of φ,

k =
N − φ+ 1− 2

⌈√
N
⌉

2
(24)
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Plugging the definition of k into b will help us seek further insights.

b =

√√√√√N − φ+ 1− 2
⌈√

N
⌉

2
+
⌈√

N
⌉2

−N

b =

√(
N − φ

2
+

1

2

)2

−N

b =

√(
N − φ+ 1

2

)2

−N

(25)

k can be rewritten,

k =
N − φ+ 1− 2

⌈√
N
⌉

2

k =

(
N − φ+ 1

2

)
−
⌈√

N
⌉ (26)

Let J be defined by, J = N−φ+1
2 . Then,

b =
√
J2 −N

k = J −
⌈√

N
⌉ (27)

This is the same J that we found in ’A Direct Function’. We prove this by
plugging definitions of b and k in terms of J into eq.(5).

N = (
⌈√

N
⌉

+ k + b)(
⌈√

N
⌉

+ k − b)

N = (J +
⌈√

J2 −N
⌉
)(J −

⌈√
J2 −N

⌉
)

N = J2 −
⌈√

J2 −N
⌉2 (28)

7 b division attack

If b mod k = 0 or k = b
D where, D ∈ N and is unknown; then the factorization

of N = qp is insecure, and can be exploited. Equation (5) can be written to
have k in terms of b.

N = (
⌈√

N
⌉

+ k + b)(
⌈√

N
⌉

+ k − b)

N = (
⌈√

N
⌉

+
b

D
) + b)(

⌈√
N
⌉

+
b

D
− b)

(29)

The equation can be solved for b where b ∈ N. The equation for b in terms of
D is:

b =

√
D4
⌈√

N
⌉2
−D4N +D2N +D

⌈√
N
⌉

D2 − 1
(30)
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This equation makes a lot of sense as b > k which means D > 1. This holds
true as seen in the denominator of (9). Solving for a b ∈ Z, yields the correct
solution for both b and D. We can simplify the operations to guess the correct
D. We can break up the definition of b into three distinct integer parts, the
numerator in the square root, the numerator, and the denominator. Assuming
they are all integers we can determine a simplification for determining b.

A,B,C ∈ N
√
A+B

C√
A /∈ N, then,
√
A+B /∈ N

(
√
A /∈ N) +B

C
/∈ N

(31)

(10) shows that b ∈ N is entirely dependent upon, the contents of the square
root being square. So we can now instead solve for an integer solution for:√

D4
⌈√

N
⌉2
−D4N +D2N ∈ N (32)

After finding an integer solution for (11), we can plug the values of b and D
back into (8).

8 Example

N = qp = 101 ∗ 23 = 2323

Assume, D = 2√
D4
⌈√

N
⌉2
−D4N +D2N =√

24
⌈√

2323
⌉2
− 24 ∗ 2323 + 22 ∗ 2323 =

√
10540

√
10540 /∈ N So, D = D + 1√
34
⌈√

2323
⌉2
− 34 ∗ 2323 + 32 ∗ 2323 =

√
27225

√
27225 = 165 ∈ N

(33)

Though we know the contents of the square root are square, there is still a
chance that given our estimate for D that b /∈ N. So we must now calculate all
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of b and confirm it is an integer using (9).

b =

√
27225 +D

⌈√
N
⌉

D2 − 1

b =

√
27225 + 3 ∗ 49

32 − 1

b = 39 ∈ N
We now plug b and D into (8).

N = (
⌈√

2323
⌉

+
39

3
) + 39)(

⌈√
2323

⌉
+

39

3
− 39)

N = (101)(23)

(34)

9 Conclusion

Though there are good rules put in place to insure that

√
(
⌈√

N
⌉

+ k)2 −N ∈
Z, there isn’t proper rules in place to insure that that b mod k 6= 0, which
allows for the b division attack.
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