Prime Factorization and Factor Range Estimation

Henry Samuelson hes227@cornell.edu

May 2019-March 2020

1 Introduction

Let: $q, p \in \text{prime. Let: } N = qp. \text{ Fermat's Factorization states:}$

$$
N = (a+b)(a-b)
$$
 (1)

Unless $\sqrt{N} \in \mathbb{N}$, then $q > \left\lceil \sqrt{N} \right\rceil$, and $p < \left\lceil \sqrt{N} \right\rceil$. Hence we define:

$$
a = \left\lceil \sqrt{N} \right\rceil
$$

$$
N = (\left\lceil \sqrt{N} \right\rceil + b)(\left\lceil \sqrt{N} \right\rceil - b)
$$
 (2)

This works if the difference of the perfect square above $N, \left[\sqrt{N}\right]^2$, and N is also square.

$$
\sqrt{\left[\sqrt{N}\right]^2 - N} \in \mathbb{N}
$$
 (3)

To account for situations where the difference isn't square we can add an k to make this always true.

$$
\sqrt{\left(\left\lceil \sqrt{N} \right\rceil + k\right)^2 - N} \in \mathbb{N}
$$
\n(4)

The k insures that the square root will be in \mathbb{Z} . Hence we can adapt the earlier equation too:

$$
N = (\left\lceil \sqrt{N} \right\rceil + k + b)(\left\lceil \sqrt{N} \right\rceil + k - b) \tag{5}
$$

For all cases where the difference between $\sqrt{\left[\sqrt{N}\right]^2 - N} \in \mathbb{N}$ we assume $k = 0$. For non-zero k's, the complexity is NP hard, whereas when $k = 0$ the equation can be solved with basic algebra.

2 Determining b

We first define some rules for k and b. It is clear that $b > 0$ as $b = 0$ would mean $q = p$. We make the assumption that $k < b$. Then we can determine a relation between q, p, b .

$$
\frac{q-p}{2} = b \tag{6}
$$

This equation can be shown to be objectively true if the purpose of b is thought of correctly. If b is the distance from some middle point $(\sqrt{N} + k)^2$ between q and p then b must be half of $q - p$, allowing b to be added and subtracted in either direction, to find q and p .

This next definition of b is less obvious but crucial to defining a range for b.

$$
b = \sqrt{\left(\left[\sqrt{N}\right] + k\right)^2 - N} \tag{7}
$$

It turns out that equation (4), the one we want to solve for an integer to determine the correct k is actually b. Now that we have to equations for b we can eliminate b, and derive a direct relationship between k, q, p .

$$
q - p = 2 * \sqrt{\left(\left[\sqrt{N}\right] + k\right)^2 - N} \tag{8}
$$

This equation tells allot about the relation between q, p and k , as we now have a solid equation for determining spacing which is very helpful in deriving the bounds of b, k, q and p .

3 Determining Variable Bounds

These variable bounds are only true if we assume $k \neq 0$, as we can assume if $k = 0$, then $q - p$ must = 2, and it would be very algebraically simple. We can first work to determine bounds for k. As stated earlier $k < b$, this can function as our top bound, k_{max} . The top bound of $b_{max} = \left[\sqrt{N}\right]$ There is a very import relationship between the growth rate of b and k. b grows at a faster rate than k, which is given by eq (7). If we assume b_{max} , we can determine k_{min} . We know from the definition of p, that $p = (\sqrt{N} + k - b)$. Plugging in b_{max} yields $k = 3$.

$$
p = (\left\lceil \sqrt{N} \right\rceil + k_{min} - b_{max}) \ge 3
$$

\n
$$
p = (\left\lceil \sqrt{N} \right\rceil + k_{min} - \left\lceil \sqrt{N} \right\rceil) \ge 3
$$

\n
$$
k_{min} \ge 3
$$
\n(9)

If $b_{max} = \left[\sqrt{N}\right]$ and $k < b$, we can use the relationship between k and b to calculate k_{max} . The larger the b the larger the k. According to eq (7) we can solve using b_{max} to yield k_{max} .

$$
b_{max} = \left[\sqrt{\left(\left[\sqrt{N} \right] + k_{max} \right)^2 - N} \right] = \left[\sqrt{N} \right]
$$

\n
$$
k_{max} = \left[\sqrt{b_{max}^2 + N} \right] - \left[\sqrt{N} \right]
$$

\n
$$
k_{max} = \left[\sqrt{\left[\sqrt{N} \right]^2 + N} \right] - \left[\sqrt{N} \right]
$$
\n(10)

Now we have k_{max} directly in terms of N. This is what we need to determine a final bound. We can use $k_{min} \geq 3$ to help us solve the bottom bound for b, b_{min} .

$$
b_{min} = \left\lceil \sqrt{\left(\left\lceil \sqrt{N} \right\rceil + k_{min}\right)^2 - N} \right\rceil
$$

$$
b_{min} = \left\lceil \sqrt{\left(\left\lceil \sqrt{N} \right\rceil + 3\right)^2 - N} \right\rceil
$$
 (11)

Now we have the top and bottom bounds for both b and k we can can rewrite b and k as,

$$
3 \le k \le \left\lceil \sqrt{\left\lceil \sqrt{N} \right\rceil^2 + N} \right\rceil - \left\lceil \sqrt{N} \right\rceil
$$

$$
\left\lceil \sqrt{\left(\left\lceil \sqrt{N} \right\rceil + 3^2 - N} \right\rceil \le b \le \left\lceil \sqrt{N} \right\rceil
$$
 (12)

Solid b and k bounds allow us to now determine bounds for q and p . We will acknowledge the obvious but important relationships,

$$
\frac{N}{q_{min}} = p_{max}, \frac{N}{p_{min}} = q_{max}
$$
\n(13)

This is helpful, because calculating q_{max} and q_{min} is easy, whereas one cannot calculate p_{min} and p_{max} using the standard definitions of q and p, due to the definitions of p including $a -$ sign.

$$
q = (\left\lceil \sqrt{N} \right\rceil + k + b)
$$

\n
$$
q_{max} = (\left\lceil \sqrt{N} \right\rceil + k_{min} + b_{max}) = (2\left\lceil \sqrt{N} \right\rceil + 3)
$$

\n
$$
q_{min} = (\left\lceil \sqrt{N} \right\rceil + k_{min} + b_{min}) = (\left\lceil \sqrt{N} \right\rceil + 3 + \left\lceil \sqrt{(\left\lceil \sqrt{N} \right\rceil + 3)^2 - N} \right\rceil)
$$
\n(14)

The bounds for q are complete along with the bounds of p using eq (13),

$$
\left\lceil \sqrt{N} \right\rceil + 3 + \left\lceil \sqrt{(\left\lceil \sqrt{N} \right\rceil + 3)^2 - N} \right\rceil \le q \le 2\left\lceil \sqrt{N} \right\rceil + 3
$$
\n
$$
\frac{N}{2\left\lceil \sqrt{N} \right\rceil + 3} \le p \le \frac{N}{\left\lceil \sqrt{N} \right\rceil + 3 + \left\lceil \sqrt{(\left\lceil \sqrt{N} \right\rceil + 3)^2 - N} \right\rceil} \tag{15}
$$

For example the for $N = 2231 = qp = (97)(23), k = 12, b = 37$, the estimated bounds are as follows:

$$
3 \le k \le 20
$$

\n
$$
20 \le b \le 48
$$

\n
$$
71 \le q \le 99
$$

\n
$$
23 \le p \le 32
$$

\n(16)

These bounds are quite good.

4 Solving For k

We can rewrite the b relation equation– eq(8)– to be in terms of k to determine how many k's we have to brute force directly in order to deterine the factors of N, p and q .

$$
k_{actual} = \frac{1}{2}(q + p - 2\left\lceil\sqrt{N}\right\rceil)
$$
\n(17)

This means that the number of k's we have to guess is directly dependent upon the distance between p and q , and the actual value of N . Since we can calculate the bottom bound of k we can subtract it from the number of steps it takes to solve to calculate a new complexity.

$$
k_{guesses} = \frac{1}{2}(q + p - 2\left\lceil\sqrt{N}\right\rceil) - 3\tag{18}
$$

Given the equation it would appear to make N as resistant as possible to brute forcing k's, the best thing to do would be to maximize the first half of the equation by maximizing both q and p . And then to minimize the second half of the equation by making N or $q * p$ smaller. This means that there is an optimal ratio that exists that maximizes $q + p$ while minimizing $q * p$. This may seem counter intuitive at first, as it is commonly thought that a larger N is better, but it is really only better when $q - p$ and $q + p$ are larger.

5 A Direct Function

We have an equation for N , eq. (5), we have an equation for b in terms of k eq. (7). Now we also have an equation for k, (k_{actual}) , eq. (17). Eq. 7 and 17 can be plugged into eq. 5.

$$
N = (\left\lceil \sqrt{N} \right\rceil + k + b)(\left\lceil \sqrt{N} \right\rceil + k - b)
$$

\n
$$
N = (\left\lceil \sqrt{N} \right\rceil + k + (\sqrt{(\left\lceil \sqrt{N} \right\rceil + k)^2 - N}))(\left\lceil \sqrt{N} \right\rceil + k - (\sqrt{(\left\lceil \sqrt{N} \right\rceil + k)^2 - N}))
$$

\n
$$
N = (\left\lceil \sqrt{N} \right\rceil + \frac{1}{2}(q + p - 2\left\lceil \sqrt{N} \right\rceil) + (\sqrt{(\left\lceil \sqrt{N} \right\rceil + \frac{1}{2}(q + p - 2\left\lceil \sqrt{N} \right\rceil))^2 - N}))
$$

\n
$$
(\left\lceil \sqrt{N} \right\rceil + \frac{1}{2}(q + p - 2\left\lceil \sqrt{N} \right\rceil) - (\sqrt{(\left\lceil \sqrt{N} \right\rceil + \frac{1}{2}(q + p - 2\left\lceil \sqrt{N} \right\rceil))^2 - N}))
$$
\n(19)

Simplify,

$$
N = \left(\frac{1}{2}(\lceil q \rceil + \lceil p \rceil) + \sqrt{\left(\frac{1}{2}(\lceil q \rceil + \lceil p \rceil)\right)^2 - N}\right)\left(\frac{1}{2}(\lceil q \rceil + \lceil p \rceil) - \sqrt{\left(\frac{1}{2}(\lceil q \rceil + \lceil p \rceil)\right)^2 - N}\right)
$$

Let:
$$
J = \frac{1}{2}(\lceil q \rceil + \lceil p \rceil)
$$

$$
N = J^2 - \left[\sqrt{J^2 - N}\right]^2
$$
(20)

The final simplification with J can be confusing. Eq. (19) is a linear line that is equivalent to $y = -x + (q + p)$, where x and y are possible q, p values, and where $(q + p)$ is some constant. This means that at all points on the line the x and y values add to $(q + p)$. It is also true that this line must intersect the line $y = x$, due to its slope being $-x$. Then one can substitute x for y. Plugging in x for y, yields just $J = x$, so we can consider J as a variable with no definition except solving fo J will be solving for the case in which $x = y$. This will not be the actual answer we need for x and y, but it will tell us what $(q + p)$ is. If this is known we can factorize our number as we know $qp = N$ and $y = -x + (q + p)$, as there is only two free variables since $(q + p)$ and N are known..There will be two intersections of the lines, with coordinates (q, p) , and (p, q) . As shown bellow, the red line is $2231 = J^2 - \left[\sqrt{J^2 - N}\right]^2$, where J has a definition in terms of q and p, and the blue line is, $qp = 2231$. Their intersections are the prime factors of N, in this case 2231.

6 Substitution With A Totient

The totient of the factor of two primes can be defined as $(p-1)(q-1) = \phi$. It can also be rewritten as $N - q - p + 1 = \phi$. This last identity is very powerful. Thinking about the totient in terms of k and b we can define it as,

$$
\phi = \left(\left\lceil \sqrt{N} \right\rceil - 1 + k + b\right)\left(\left\lceil \sqrt{N} \right\rceil - 1 + k - b\right) \tag{21}
$$

This is reasonable as $\phi = (p-1)(q-1)$. Plugging into the definition of b from eq. (7) we get the powerful relation,

$$
b = \sqrt{(48 + k)^2 - N} = \sqrt{(47 + k)^2 - \phi}
$$

Simplify,

$$
N - \phi = 2\left[\sqrt{N}\right] - 1 + 2k
$$
 (22)

Substituting for $N - \phi$ will lead to the previously derived definition of $k =$ $(q+p)/2 - \left[\sqrt{N}\right]$. We now have the relation,

$$
N - \phi = 2\left[\sqrt{N}\right] - 1 + 2k = q + p - 1\tag{23}
$$

We now write a solid definition of k in terms of ϕ ,

$$
k = \frac{N - \phi + 1 - 2\left[\sqrt{N}\right]}{2} \tag{24}
$$

Plugging the definition of k into b will help us seek further insights.

$$
b = \sqrt{\left(\frac{N-\phi+1-2\left[\sqrt{N}\right]}{2} + \left[\sqrt{N}\right]\right)^2 - N}
$$

\n
$$
b = \sqrt{\left(\frac{N-\phi}{2} + \frac{1}{2}\right)^2 - N}
$$

\n
$$
b = \sqrt{\left(\frac{N-\phi+1}{2}\right)^2 - N}
$$
\n(25)

 k can be rewritten,

$$
k = \frac{N - \phi + 1 - 2\left[\sqrt{N}\right]}{2}
$$

\n
$$
k = \left(\frac{N - \phi + 1}{2}\right) - \left[\sqrt{N}\right]
$$
\n
$$
N = \left(\frac{N - \phi + 1}{2}\right) - \left[\sqrt{N}\right]
$$
\n(26)

Let *J* be defined by, $J = \frac{N-\phi+1}{2}$. Then,

$$
b = \sqrt{J^2 - N}
$$

\n
$$
k = J - \left\lceil \sqrt{N} \right\rceil
$$
\n(27)

This is the same J that we found in 'A Direct Function'. We prove this by plugging definitions of b and k in terms of J into eq.(5).

$$
N = (\left\lceil \sqrt{N} \right\rceil + k + b)(\left\lceil \sqrt{N} \right\rceil + k - b)
$$

\n
$$
N = (J + \left\lceil \sqrt{J^2 - N} \right\rceil)(J - \left\lceil \sqrt{J^2 - N} \right\rceil)
$$

\n
$$
N = J^2 - \left\lceil \sqrt{J^2 - N} \right\rceil^2
$$
\n(28)

7 b division attack

If b mod $k = 0$ or $k = \frac{b}{D}$ where, $D \in \mathbb{N}$ and is unknown; then the factorization of $N = qp$ is insecure, and can be exploited. Equation (5) can be written to have k in terms of b .

$$
N = (\left\lceil \sqrt{N} \right\rceil + k + b)(\left\lceil \sqrt{N} \right\rceil + k - b)
$$

$$
N = (\left\lceil \sqrt{N} \right\rceil + \frac{b}{D}) + b)(\left\lceil \sqrt{N} \right\rceil + \frac{b}{D} - b)
$$
 (29)

The equation can be solved for b where $b \in \mathbb{N}$. The equation for b in terms of \boldsymbol{D} is:

$$
b = \frac{\sqrt{D^4 \left[\sqrt{N}\right]^2 - D^4 N + D^2 N} + D \left[\sqrt{N}\right]}{D^2 - 1}
$$
\n(30)

This equation makes a lot of sense as $b > k$ which means $D > 1$. This holds true as seen in the denominator of (9). Solving for a $b \in \mathbb{Z}$, yields the correct solution for both b and D . We can simplify the operations to guess the correct D. We can break up the definition of b into three distinct integer parts, the numerator in the square root, the numerator, and the denominator. Assuming they are all integers we can determine a simplification for determining b.

$$
A, B, C \in \mathbb{N}
$$

\n
$$
\frac{\sqrt{A} + B}{C}
$$

\n
$$
\sqrt{A} \notin \mathbb{N}, \text{ then,}
$$

\n
$$
\frac{(\sqrt{A} \notin \mathbb{N}) + B}{C} \notin \mathbb{N}
$$

\n(31)

(10) shows that $b \in \mathbb{N}$ is entirely dependent upon, the contents of the square root being square. So we can now instead solve for an integer solution for:

$$
\sqrt{D^4 \left[\sqrt{N}\right]^2 - D^4 N + D^2 N} \in \mathbb{N}
$$
\n(32)

After finding an integer solution for (11) , we can plug the values of b and D back into (8).

8 Example

$$
N = qp = 101 * 23 = 2323
$$

Assume, $D = 2$

$$
\sqrt{D^4 \left[\sqrt{N}\right]^2 - D^4 N + D^2 N} =
$$

$$
\sqrt{2^4 \left[\sqrt{2323}\right]^2 - 2^4 * 2323 + 2^2 * 2323} = \sqrt{10540}
$$

$$
\sqrt{10540} \notin N \text{ So, } D = D + 1
$$

$$
\sqrt{3^4 \left[\sqrt{2323}\right]^2 - 3^4 * 2323 + 3^2 * 2323} = \sqrt{27225}
$$

$$
\sqrt{27225} = 165 \in N
$$

(33)

Though we know the contents of the square root are square, there is still a chance that given our estimate for D that $b \notin \mathbb{N}$. So we must now calculate all of b and confirm it is an integer using (9) .

$$
b = \frac{\sqrt{27225} + D\left[\sqrt{N}\right]}{D^2 - 1}
$$

$$
b = \frac{\sqrt{27225} + 3 \times 49}{3^2 - 1}
$$

$$
b = 39 \in \mathbb{N}
$$

We now plug b and D into (8) .

$$
N = (\sqrt{2323} + \frac{39}{3}) + 39)(\sqrt{2323} + \frac{39}{3} - 39)
$$

$$
N = (101)(23)
$$
 (34)

9 Conclusion

Though there are good rules put in place to insure that $\sqrt{(\sqrt{N}) + k^2 - N}$ Z, there isn't proper rules in place to insure that that $b \mod k \neq 0$, which allows for the b division attack.