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1 Introduction
Let: q,p € prime. Let: N = gp. Fermat’s Factorization states:
N =(a+b)(a—Db) (1)

Unless VN € N, then ¢ > [\/ﬁ—‘, and p < {\/ﬁ—‘ Hence we define:

a=|VN]

N = ([VN| +6)([VN| - b) .

2
This works if the difference of the perfect square above N, [\/ﬁ —‘ , and N is
also square.

WNT—NeN 3)

To account for situations where the difference isn’t square we can add an & to
make this always true.

\/([\/N]Jrk)?—NeN (4)

The k insures that the square root will be in Z. Hence we can adapt the earlier
equation too:

N = ([VN] +k+b)([VN] + k1) (5)

2
For all cases where the difference between 4/ [\/N -‘ — N € N we assume k& = 0.

For non-zero k’s, the complexity is N P hard, whereas when k£ = 0 the equation
can be solved with basic algebra.
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2 Determining b

We first define some rules for k and b. It is clear that b > 0 as b = 0 would
mean ¢ = p. We make the assumption that £k < b. Then we can determine a
relation between g, p, b.

q—Dp
b (6)

This equation can be shown to be objectively true if the purpose of b is thought
of correctly. If b is the distance from some middle point ({\/N —‘ + k)? between

q and p then b must be half of ¢ — p, allowing b to be added and subtracted in
either direction, to find ¢ and p.
This next definition of b is less obvious but crucial to defining a range for b.

b\/([\/lﬂ+k)21v (7)

It turns out that equation (4), the one we want to solve for an integer to deter-
mine the correct k is actually b. Now that we have to equations for b we can
eliminate b, and derive a direct relationship between k, ¢, p.

q_pzz*\/([\/ﬂJrk)?—N (8)

This equation tells allot about the relation between ¢,p and k, as we now have
a solid equation for determining spacing which is very helpful in deriving the
bounds of b, k, ¢ and p.

3 Determining Variable Bounds

These variable bounds are only true if we assume k # 0, as we can assume if
k =0, then ¢ — p must = 2, and it would be very algebraically simple. We can
first work to determine bounds for k. As stated earlier k < b, this can function

as our top bound, k... The top bound of b, = {\/]V—‘ There is a very

import relationship between the growth rate of b and k. b grows at a faster rate
than k, which is given by eq (7). If we assume b4z, we can determine k,;,,. We

know from the definition of p, that p = ( {\/N—‘ +k—b). Plugging in by, yields
k=3.

+
|+ ki = [VE]) >3 )

kmin >3

If byar = [\/JV—‘ and k < b, we can use the relationship between k and b to
calculate k.. The larger the b the larger the k. According to eq (7) we can



solve using b,,q. to yield kpqz-

binas = \/( [\/Jﬂ + kmaz)? — N} = Wﬂ
Fmaz = | VPas + N| = [VN] (10)

Fmaz = [x/ﬂQJer - [V

Now we have k,,,, directly in terms of N. This is what we need to determine
a final bound. We can use K, > 3 to help us solve the bottom bound for b,

bumin = W ([ V] + omin)? = N-‘
buin = W( (VN +38)2 - N—‘

Now we have the top and bottom bounds for both b and k& we can can rewrite
b and k as,

bmin .

(11)

3<k<{ Wﬂﬁﬂ—[\/ﬂ "

W([\/ﬂ +3)2—N-‘ <b< |[VN|

Solid b and k bounds allow us to now determine bounds for ¢ and p. We will
acknowledge the obvious but important relationships,

N N
= Pmazs —— = Qmax (13)

qmin min

This is helpful, because calculating ¢, and g, is easy, whereas one cannot
calculate pyin and ppq. using the standard definitions of ¢ and p, due to the
definitions of p including a — sign.

q:({\/ﬁ-‘ +k+0b)

Qmaz = ([\/NW + kmin + bmaz) = (2 [\/N—‘ +3) (14)

Gmin = ([\/Jﬂ + Emin + bmin) = (Wﬂ +3+ {\/( {\/ﬂ +3)2 — Nl)



The bounds for ¢ are complete along with the bounds of p using eq (13),

[\/ﬂ +3+ {\/d\/}ﬂ —1—3)2—N—‘ gqgﬂx/ﬂ +3
N N (15)
2[\/Jﬂ I [\/ﬁ] +34 [\/([\/ﬂ +3)2—N‘

For example the for N = 2231 = ¢p = (97)(23), k = 12,b = 37, the estimated
bounds are as follows:

These bounds are quite good.

4 Solving For k

We can rewrite the b relation equation— eq(8)— to be in terms of k to determine
how many k’s we have to brute force directly in order to deterine the factors of
N, p and q.

Kactual = %(q +p—2[\/ﬂ) (17)

This means that the number of k’s we have to guess is directly dependent upon
the distance between p and ¢, and the actual value of N. Since we can calculate
the bottom bound of £ we can subtract it from the number of steps it takes to
solve to calculate a new complexity.

kguesses:%(ﬁp—?{\/ﬂ)—i% (18)

Given the equation it would appear to make N as resistant as possible to brute
forcing k’s, the best thing to do would be to maximize the first half of the
equation by maximizing both ¢ and p. And then to minimize the second half of
the equation by making N or ¢ *p smaller. This means that there is an optimal
ratio that exists that maximizes g + p while minimizing ¢ * p. This may seem
counter intuitive at first, as it is commonly thought that a larger N is better,
but it is really only better when ¢ — p and ¢ + p are larger.

5 A Direct Function

We have an equation for N, eq. (5), we have an equation for b in terms of k eq.
(7). Now we also have an equation for k, (kqctual), €q. (17). Eq. 7 and 17 can



be plugged into eq. 5.

N:([\/ﬂ +k+b)([\/ﬂ +k—b)

N = ([VN| +k+(\/([\/ﬂ + k)2 = N))([VN] + k= <\/([\/ﬂ + k)2 = N))
N = ([VF] + a2 VE]) + (J[VE] + g+ 2[ V]2 - )
(V] + sa+p—2[VE) - (V] + Sta+p—2[VE] 2 - )
(19)
Simplify,
1 1
N = a1+ 1o1) 4 G (1aT + D)2 = M) + 1) — /3T + T2 — )
Let: J = ¢ ([a] + [p])
N=J%- [ JLN]2
(20)

The final simplification with J can be confusing. Eq. (19) is a linear line that
is equivalent to y = —x + (¢ + p), where x and y are possible ¢, p values, and
where (¢ + p) is some constant. This means that at all points on the line the x
and y values add to (¢ + p). It is also true that this line must intersect the line
y = x, due to its slope being —x. Then one can substitute x for y. Plugging in
x for y, yields just J = z, so we can consider J as a variable with no definition
except solving fo J will be solving for the case in which x = y. This will not be
the actual answer we need for x and y, but it will tell us what (¢ + p) is. If this
is known we can factorize our number as we know gp = N and y = —x+ (¢+p),
as there is only two free variables since (¢ + p) and N are known..There will
be two intersections of the lines, with coordinates (g, p), and (p,¢q). As shown

bellow, the red line is 2231 = J% — {\/ J? — N]Q, where J has a definition in
terms of ¢ and p, and the blue line is, gp = 2231. Their intersections are the
prime factors of N, in this case 2231.
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6 Substitution With A Totient

The totient of the factor of two primes can be defined as (p — 1)(¢ — 1) = ¢. Tt
can also be rewritten as N —q — p+ 1 = ¢. This last identity is very powerful.
Thinking about the totient in terms of k and b we can define it as,

o= ([VN] =1+ k+0)([VN] =14k -1) (21)

This is reasonable as ¢ = (p — 1)(¢ — 1). Plugging into the definition of b from
eq. (7) we get the powerful relation,

b=+/(484+ k)2 — N = /(47 + k)2 —¢
Simplify, (22)
N—¢=2[\/ﬂ 14 2%k

Substituting for N — ¢ will lead to the previously derived definition of k =
(g+p)/2—- {\/]Tf—‘ We now have the relation,

N-¢=2Wﬂ-1+2k:q+p—1 (23)
We now write a solid definition of k in terms of ¢,
N—¢+1-2 [m]
k= 5 (24)



Plugging the definition of k£ into b will help us seek further insights.

N-¢+1-2[VN]

2

+|VN] | -w

k can be rewritten,

) N-¢+1-2[VN|
B N 21 (26)
-+
= ()
Let J be defined by, J = Y=L Then,
b=+J2—N o)
k=J— [\/Jﬂ

This is the same J that we found in 'A Direct Function’. We prove this by
plugging definitions of b and k in terms of J into eq.(5).

N:([\/ﬂ +k+b)([\/ﬂ +k—b)
N=(+ [\/ﬁ —N])(J— [\/JZ —Nb (28)

N:JQ—[ JQ—NT

7 b division attack

Ifb mod k=0ork= % where, D € N and is unknown; then the factorization
of N = g¢p is insecure, and can be exploited. Equation (5) can be written to
have k in terms of b.

N = ([VN] +k+0)([VN] +k-b)
N = ([VN] +%)+b)([\/ﬂ +%—b)

The equation can be solved for b where b € N. The equation for b in terms of
D is:

(29)

\/D4 [\/NT ~ DN + D2N + D[N
D1

b= (30)



This equation makes a lot of sense as b > k which means D > 1. This holds
true as seen in the denominator of (9). Solving for a b € Z, yields the correct
solution for both b and D. We can simplify the operations to guess the correct
D. We can break up the definition of b into three distinct integer parts, the
numerator in the square root, the numerator, and the denominator. Assuming
they are all integers we can determine a simplification for determining b.

A B,CeN
VA+B
C
VA ¢ N, then, (31)
VA+B¢N
(VA¢N)+B

C #N

(10) shows that b € N is entirely dependent upon, the contents of the square
root being square. So we can now instead solve for an integer solution for:

2
\/D4 [\/ﬂ — DN + D2N €N (32)
After finding an integer solution for (11), we can plug the values of b and D
back into (8).
8 Example

N =qp =101 % 23 = 2323
Assume, D =2

\/DZ{\/NT — DAN + D2N =

2
\/ 24 {\/2323] — 24 %2323 + 22 % 2323 = /10540 (33)
V10540 ¢ N So, D = D + 1

2
\/34 [\/ 2323—‘ — 3% %2323 + 32 % 2323 = V27225
V27225 =165 € N

Though we know the contents of the square root are square, there is still a
chance that given our estimate for D that b ¢ N. So we must now calculate all




of b and confirm it is an integer using (9).

V27335 + D[VN]
B D1
V27225 + 3 % 49
T
b=39¢eN
We now plug b and D into (8).

b

b

N
N

(101)(23)

9 Conclusion

:([\/ﬁw +?)+39)([\/@W +?739)

Though there are good rules put in place to insure that ([\/]V—‘ +k)2-Nc¢g

Z, there isn’t proper rules in place to insure that that b mod k& # 0, which

allows for the b division attack.
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